Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices.

نویسندگان

  • Min Sup Choi
  • Gwan-Hyoung Lee
  • Young-Jun Yu
  • Dae-Yeong Lee
  • Seung Hwan Lee
  • Philip Kim
  • James Hone
  • Won Jong Yoo
چکیده

Atomically thin two-dimensional materials have emerged as promising candidates for flexible and transparent electronic applications. Here we show non-volatile memory devices, based on field-effect transistors with large hysteresis, consisting entirely of stacked two-dimensional materials. Graphene and molybdenum disulphide were employed as both channel and charge-trapping layers, whereas hexagonal boron nitride was used as a tunnel barrier. In these ultrathin heterostructured memory devices, the atomically thin molybdenum disulphide or graphene-trapping layer stores charge tunnelled through hexagonal boron nitride, serving as a floating gate to control the charge transport in the graphene or molybdenum disulphide channel. By varying the thicknesses of two-dimensional materials and modifying the stacking order, the hysteresis and conductance polarity of the field-effect transistor can be controlled. These devices show high mobility, high on/off current ratio, large memory window and stable retention, providing a promising route towards flexible and transparent memory devices utilizing atomically thin two-dimensional materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hysteresis characteristics of hetero-structured devices using two-dimensional materials for memory applications

Recently, various hetero-structured devices using two-dimensional materials have been developed due to its high performances and flexibility. [1]-[3] In this work, the ultrathin memory devices consisting of twodimensional (2D) materials were fabricated by stacking graphene, hexagonal boron nitride (hBN), and molybdenum disulfide (MoS2), demonstrating large memory window and good retention prope...

متن کامل

Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers.

Single-layered molybdenum disulphide with a direct bandgap is a promising two-dimensional material that goes beyond graphene for the next generation of nanoelectronics. Here, we report the controlled vapour phase synthesis of molybdenum disulphide atomic layers and elucidate a fundamental mechanism for the nucleation, growth, and grain boundary formation in its crystalline monolayers. Furthermo...

متن کامل

High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals.

Unlike graphene, the existence of bandgaps (1-2 eV) in the layered semiconductor molybdenum disulphide, combined with mobility enhancement by dielectric engineering, offers an attractive possibility of using single-layer molybdenum disulphide field-effect transistors in low-power switching devices. However, the complicated process of fabricating single-layer molybdenum disulphide with an additi...

متن کامل

Isolated nanographene crystals for nano-floating gate in charge trapping memory

Graphene exhibits unique electronic properties, and its low dimensionality, structural robustness, and high work-function make it very promising as the charge storage media for memory applications. Along with the development of miniaturized and scaled up devices, nanostructured graphene emerges as an ideal material candidate. Here we proposed a novel non-volatile charge trapping memory utilizin...

متن کامل

Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures

Two-dimensional layered transition metal dichalcogenides (TMDCs) show great potential for optoelectronic devices due to their electronic and optical properties. A metal-semiconductor interface, as epitaxial graphene - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science, as it constitutes an outstanding platform to investigate the interlayer interaction i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013